National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Topological-geometric design and stress-strain analysis of the railroad wheel disc shape for different operating conditions on the grounds of LEFM
Brabenec, Ladislav ; Janíček, Přemysl (referee) ; Navrátil, Petr (advisor)
The thesis deals with the behaviour of a cracked rail wheel. The aim was to perform the strain analysis of intact wheel as well as the fracture analysis of the primary direct cracked wheel. Solution includes an analysis of operating conditions, assessment of the substantiality of articular components of load, stiffness of the wheel, a comprehensive analysis of fracture of the selected railway wheel profile and optimization of the wheel shape depending on the matching fracture properties.
Analysis of crack propagation in railroad wheel under operating conditions
Navrátil, Petr ; Schmidová,, Eva (referee) ; Janíček, Přemysl (advisor)
This Master´s thesis deals with the determination of the propagation directions of primary crack in the rail vehicles wheel under operating conditions. The aim of this work is the stress-strain analysis with using fracture mechanics to examinate behaviour of primary cracks for different operating conditions, i.e. rotation, rotation with contact and assessment of refracted cracks with applied rotation and contact.
Design of a test condition for determining the wear at the contact of a railway wheel and rail
Rec, Matouš ; Prokop, Aleš (referee) ; Řehák, Kamil (advisor)
This diploma thesis focuses on the issue of a wear of a railway wheel and a rail. The wear of the components depends on a number of parameters including the contact stress, the contact pressure and the contact surface dimensions. Among the factors determining these parameters belongs primarily the wheel driving gauge, the rail profile and the load of the contact area. Furthermore, the material from which the wheels and rail are made, the roughness and hardness of the functional surfaces and the residual stress in the material have a significant impact on the wear. All the parameters mentioned above are designed for the production of the railway wheels and rails and therefore they meet the standards for the production of these components. However, the existence of the changeable parameters has also a significant impact on the wear. These parameters include the presence of contaminants, or lubricants in contact, the changing driving gauge due to the wear, the slip ratio or the friction coefficient. With the wear being an inevitable process during the application it cannot be eliminated but only controlled. Applying the lubricant into the contact when passing through the arc in order to achieve an ideal coefficient or the maintenance grinding for restoring the driving gauge can serve the purpose. If properly optimized, the importance of the wear research lies in the financial savings. Being the crucial factor for optimization of the intervals between the maintenance grinding, the research is also beneficial. A high-quality wear prediction can be seen as the key field in order to increase the safety of the railway vehicles operation as well. Therefore, the wear research is made using several methods, such as the computational models, the multi-body dynamics software and the technical experiments. This thesis introduces a conceptual design of the test, enabling the wear research via experimental approach. The final device is capable of a simulation of both volume and fatigue wear during the states the railway wheel and railway undergo including riding on the straight track, passing through an arc or a wheel slip during braking.
Design of a test condition for determining the wear at the contact of a railway wheel and rail
Rec, Matouš ; Prokop, Aleš (referee) ; Řehák, Kamil (advisor)
This diploma thesis focuses on the issue of a wear of a railway wheel and a rail. The wear of the components depends on a number of parameters including the contact stress, the contact pressure and the contact surface dimensions. Among the factors determining these parameters belongs primarily the wheel driving gauge, the rail profile and the load of the contact area. Furthermore, the material from which the wheels and rail are made, the roughness and hardness of the functional surfaces and the residual stress in the material have a significant impact on the wear. All the parameters mentioned above are designed for the production of the railway wheels and rails and therefore they meet the standards for the production of these components. However, the existence of the changeable parameters has also a significant impact on the wear. These parameters include the presence of contaminants, or lubricants in contact, the changing driving gauge due to the wear, the slip ratio or the friction coefficient. With the wear being an inevitable process during the application it cannot be eliminated but only controlled. Applying the lubricant into the contact when passing through the arc in order to achieve an ideal coefficient or the maintenance grinding for restoring the driving gauge can serve the purpose. If properly optimized, the importance of the wear research lies in the financial savings. Being the crucial factor for optimization of the intervals between the maintenance grinding, the research is also beneficial. A high-quality wear prediction can be seen as the key field in order to increase the safety of the railway vehicles operation as well. Therefore, the wear research is made using several methods, such as the computational models, the multi-body dynamics software and the technical experiments. This thesis introduces a conceptual design of the test, enabling the wear research via experimental approach. The final device is capable of a simulation of both volume and fatigue wear during the states the railway wheel and railway undergo including riding on the straight track, passing through an arc or a wheel slip during braking.
Topological-geometric design and stress-strain analysis of the railroad wheel disc shape for different operating conditions on the grounds of LEFM
Brabenec, Ladislav ; Janíček, Přemysl (referee) ; Navrátil, Petr (advisor)
The thesis deals with the behaviour of a cracked rail wheel. The aim was to perform the strain analysis of intact wheel as well as the fracture analysis of the primary direct cracked wheel. Solution includes an analysis of operating conditions, assessment of the substantiality of articular components of load, stiffness of the wheel, a comprehensive analysis of fracture of the selected railway wheel profile and optimization of the wheel shape depending on the matching fracture properties.
Analysis of crack propagation in railroad wheel under operating conditions
Navrátil, Petr ; Schmidová,, Eva (referee) ; Janíček, Přemysl (advisor)
This Master´s thesis deals with the determination of the propagation directions of primary crack in the rail vehicles wheel under operating conditions. The aim of this work is the stress-strain analysis with using fracture mechanics to examinate behaviour of primary cracks for different operating conditions, i.e. rotation, rotation with contact and assessment of refracted cracks with applied rotation and contact.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.